
Flow separation in laminar 
natural convection 
K. G e r s t e n , *  M .  G r o b e l , f  H .  K l i c k *  a n d  W .  M e r z k i r c h ~  
*lnst i tut for Thermo- und Fluiddynamik, Universitfit Bochum, Germany 
~Lehrstuhl for Str6mungslehre, Universitiit Essen, Germany 

Theoretical and experimental studies of flow separation in laminar natural convection are 
presented. Since classical boundary-layer theory cannot determine separation on curved 
walls in natural convection, two extensions of the classical boundary-layer theory are 
discussed: boundary-layer theory of higher order and double-deck theory. Both theories 
are applied to experiments on a vertical flat plate with humps. 
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I n t r o d u c t i o n  

The calculation of laminar flow in natural convection is usually 
achieved through the use of the classical boundary-layer theory.1 
This theory, however, cannot predict laminar natural-convection 
flows with separation, i.e., it cannot predict a zero wall shear 
stress, as will be shown in Appendix 1. This result is a direct 
contradiction of experimental evidence. The classical boundary- 
layer theory is an asymptotic theory, i.e., it represents solutions 
of the Navier-Stokes and energy equations for high values of 
the Grashof number. Within the context of this theory, specific 
terms are neglected that refer to higher-order effects. One of 
these effects is called the curvature effect, which can be neglected 
at high Grashof numbers because of the extremely thin boundary 
layer. Another higher-order effect is the entrainment effect, 
which induces an external flow that interacts with the boundary 
layer. 

Flow separation can be considered as a higher-order effect 
in the context of this asymptotic theory. The classical boundary- 
layer theory can be easily extended to a boundary-layer theory 

2 3  of higher order. • Moreover, there exists yet a second asymptotic 
theory for large Grashof numbers, which, in contrast to the 
boundary-layer theory, treats high values of curvature. This 
theory has been developed and applied to flows over humps 
by Merkin 4 and will be referred to as double-deck theory because 
it involves two layers within the natural-convection flow. 

The purpose of the present work is to demonstrate that both 
theories can predict separation in laminar natural convection. 
Two different wall geometries will be considered and treated 
by these theories. The results of both theories will then be 
compared with experimental results. 

G e o m e t r i c  c o n f i g u r a t i o n s  

The first geometry to be considered is a vertical flat plate ( see-  
Figure 1) containing a hump whose contour is described by 

L l \1  , / J  (1) 

Here x is the vertical coordinate, h is the height of the hump, 
and I is the position of the maximum height of the hump. The 
value s is a measure of the steepness of the hump. It defines 
the position of the half-maximum height of the hump by the 
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equation 

Therefore, flat humps can be characterized by s/l-~ 0 and steep 
humps by s/l-, ~.  As will be seen in the next section, these 
two limiting cases are represented by the two asymptotic 
theories: the boundary-layer theory of higher order treats the 
flat hump well, while the double-deck theory is well suited for 
the steep humps. 

The second geometry is a vertical flat plate containing a 
semicylinder. 

The wall temperature is taken to be constant. 

Figure I 

x I 

Geometry of vertical flat plate with hump 

© 1991 Butterworth-Heinemann 

Int. J. Heat and Fluid Flow, Vol. 12, No. 4, December 1991 331 



Flow separation in laminar natural convection: K. Gersten et aL 

T h e o r y  

Boundary- layer theory of  higher order 

The continuity equation, the Navier-Stokes equations, and the 
energy equation are considered in an orthogonal coordinate 
system, £, ~, where the 2 coordinate follows the contour of the 
wall as shown in Figure 1. The following dimensionless values 
are defined : 

2 ~ u u 
s = . ,  u = - ,  v . . . .  

1 u~ ~u~ (3 )  

p_p-p~, , ,  ~= T -  T~ 

p~u~ ' T.--  Too 

with 

~ = G r -  1/4 

Gr=gfl(Tw_T~)13v 2 ( ~ ) 2  

ue = ~ / g f ( T . -  T~o)l 

(4) 

(5) 

(6) 

For the unknown functions, the following asymptotic expansions 
are assumed: 

U(S, N, e)=ul(S, N) +e[u2<(S, N) +u2,(S, N)] + . . .  

V(S, N, e) = v i(S, N) + e[v=jS, N) + vz,(S, N)] + . . .  
(7) 

P($, N, e) = ~[pz<(S, N)] + . . .  

O(S, N,e) =O~(S, N)+e[Oz~(S, N) +02,(S,N)]+... 

Since the second-order equations are linear, general solutions 
for these equations can be constructed by adding the curvature- 
effect terms (index c) and entrainment-effect t e ~ s  (index e). 

If these expansions are substituted into the flow equations 
and the individual terms grouped according to the powers of 
e, the boundary-layer equations of first and second order are 
obtained as shown in Ap~ndix 1. The equations representing 
entrainment are not shown because they correspond to the 
equations of first order, but have nonzero u-components of the 
velocity at the outer edge of the boundary layer. The system 
of equations of first order is equivalent to the classical boundary- 
layer theory. 

The variation of the w~ll shear stress for a particular hump 
(h/1=0.097; s/1=305; and the Prandtl number Pr=6.8)  is 
shown in Figure 2. The wall shear stress can be described by 

~w kaNl~ ~ + ~  
,.o "l ?uq (ouq I 

~ N J ~  L ~ J ~  ~ J ~  ~ 

whcr~ Z~o is the wall shear stress of the flat plate flow without 
hump and (~uo/~N)~ is the corresponding velocity gradient at 
the wall. It can be seen that the ~ntrainmcnt effect is negligibly 
small compared to the curvature effect. According to the 
first-order theory, the wall shear stress is redu~d by not 
more than 30% just before and just after the hump. 

In order to achieve flow separation, Zw would have to be 
reduced by an additional 70%. Second-order theory, since it 
represents only small corrections to first-order theory, will not 
~ able to a~ount  for the additional effects in the chosen 
example. Nevertheless, it does provide the correct qualitative 
~havior  and indicates that separation might occur downstream 
and eventually even upstream from the maximum height of the 
hump. 
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Figure 2 Distributions of wall shear stress for the exponential 
hump after boundary-layer theory: h//=0.097, s/I=305, Pr=6.8 
(see Equation (8)). (a) First-order theory; (b) ~cond-order eEect due 
to curvature; (c) second-order ¢Eect due to entra~mem. - - -  Entrain- 
ment of flat plate without hump 

Double-deck theory 

This theory has been developed by Merkin. 4 It is similar to the 
boundary-layer theory discussed above in that it is also an 
asymptotic theory for Gr-* oo. In fact, there is a triple-limit 
process that has to be considered. In addition to Gr--* oo, h/l -* 0 
and s/l--, oo are also required with the context that the two 
dimensionless quantities remain finite: 

hM =~ Gr9/287 - 117x4/7 (9) 
1 

kM = ~_s Gr -  3/1473/7K- 5/7 (10) 
~ I  

The limiting solution is the vertical flat-plate flow because of 
h/l ~ O. There is a relationship between the flow parameters 
and the geometry, i.e., variation of the Grashof number also 
changes the geometry. The quantities 7(Pr) and x(Pr) in 
Equations (9) and (10) result from the limiting solution for the 
vertical flat plate and are functions of the Prandtl number (see 
Appendix 1). 

In this limiting solution, there is a layer near the wall (inner 
deck) in which the velocity and temperature distribution can 
be replaced by their tangents at the wall. The relationship 
between the flow parameters and the geometry results from the 
requirement that the height of the hump is of the order of the 
thickness of this wall layer. This requirement creates a two-layer 
structure to this flow. The properties of the two decks are as 
follows. 

Inner deck. The thickness of this layer represents the height of 
the hump and is of the order of 0(Ge-9/2s). The length in the 
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flow direction is 0(Gr-6/2s). A result of this particular scaling 
is that the buoyancy forces can be neglected in comparison to 
the inertial, pressure, and viscous forces, i.e., the momentum 
equation is uncoupled from the energy equation. The pressure 
is independent of the distance from the wall and is impressed 
on the inner deck from the outer deck. The major influence of 
the inner deck is to displace the outer deck. This displacement 
results in a pressure field in the outer deck that then acts on 
the inner deck. 

It will be shown in Appendix 2 that the equations for the 
inner deck are given by the classical boundary layer without 
buoyancy but satisfying specific boundary conditions of the 
given problem. The results are the distributions of heat flux 
and shear stress at the wall. The latter is given by 

. .  
~0 k,6~Yi/w 

where Zo is the wall shear stress of the flat-plate flow at the 
plate center (z o = r,o(x/l  = 1)). 

Outer deck. The thickness of the outer deck is of the same order 
as that of the boundary layer without a hump, namely, 
0(Gr-1/4). The length is the same as in the inner deck, 
0(Gr-6/2s). The flow in the outer deck consists of the flow on 
a vertical flat plate along the hump contour and a small 
correction. The equations for the correction can be so drastically 
reduced that explicit local solutions can be given. Here again, 
the flow field is uncoupled from the temperature field. In 
particular, the momentum equation in the y-direction yields a 
simple relationship between the wall pressure and the displace- 
ment function A(x~): 

Pw(xl)= -A"(x~) (12) 

with 

x - l  
Xi = ~ -  317 K,5/T E -  6/7 - -  (13) 

l 

The most important function of the outer deck is the buildup 
of a pressure field resulting from the displacement of the inner 
deck. 

Compar ison o f  the two  theories 

The natural-convection flow over a vertical plate with a hump 
can be characterized by four dimensionless quantities: 

• Grashof number Gr 
• Prandtl number Pr 
• Relative height of hump h/l 
• Relative steepness of hump s/l 

Instead of the Grashof number, the relative boundary-layer 
thickness, fill, for flat-plate flow without hump can be used, 
since 

~i 
- = e = G r -  1/4 (14) 
l 

Both asymptotic theories are valid for the following limits at 
a given Prandtl number: 

Boundary-layer 
theory: 6/l ~O(Gr ~ o~),h/I--.O,s/l ~ O , h / t ~  ~ 

Double-deck theory: t~/l --, 0(Gr ~ ~) ,  h/l ~ O, s/l --, o~, h/6 ~ 0 

The theories are different based on their regions of validity with 
regard to s/l and hi& 

Hence, the two theories are valid for different ranges of the 
parameters, as shown schematically in Figure 3. If (as in the 
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case of forced convection 3) one differentiates between local and 
massive separation depending on whether the hump height is 
very large or very small compared with the boundary-layer 
thickness, the double-deck theory can describe only local 
separation, whereas the boundary-layer theory describes the 
massive separation. 

E x p e r i m e n t  

Experiments were performed in a water tank with the two wall 
configurations described above. A nearly two-dimensional 
(2-D) (plane) flow could be established in this test facility. The 
wall was heated to only 0.25 K above the temperature of the 
undisturbed fluid in order to provide laminar flow over the 
entire length of the wall configuration. The flow velocity in the 
free convective flow was measured with a white-light speckle 
method:  This method allows the resolution of the sign of the 
flow-velocity vectors, and it can therefore detect possible areas 
of separated and reversed flow. The error in the measurements 
was estimated to be less than 3%. 

The plate with the hump contour based on Equation (1) had 
the following characteristics: 

l=155mm Tw=21.51°C 

h = 1 5 m m  

s=47.3 m T® = 21.26°C 

The corresponding dimensionless parameters are given by 

Gr=2.1 .  106(e =6 / /=  0.026), Pr =6.8 

h/l = 0.097, h/6 = 3.73, s/l = 305 

The plate with the semicylinder hump had the following 
characteristics" 

l=  155 mm G r  = 2 . 1  - 10 6 

R = 1 9 m m  Pr=6.8 

6 / R  = 6/h = 0.21 

local separation massive separation 
/ 

_S Double- // 

\ ,/. 
I~.. ~ . . / / / /  separated 

-'~ \ ~ .  , / / ~ ' ' "  

\\ o~,..,~ i I / I  
~,_ ~ I Boundary- atlached '~'- - ~.~. . .~ I Layer 

I 
_.h 

Figure 3 Schematic parameter diagram with areas of validity for 
the two asymptotic theories (Gr = const >> 1 ). Boundary between 
attached and separated flows. - -  . . . .  Asymptotes for asymptotic 
theories. C) Experimental point for exponential hump. - - -  Areas of 
validity of the theories 
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Figure 4 Distributions of wal l  shear stress for the exponential hump 
(Gr = 2,1 • 10'; ~ = Gr- 1/4 = 0.026; Pr = 6.8; h/l= 0.097; s/l= 305). (a) 
Boundary-layer theory; (b) double-deck theory 

R e s u l t s  a n d  d i s c u s s i o n  

Exponential hump 

The experimental parameters ~=0.026 and h/1=0.097 are 
sufficiently small to be considered asymptotic. More proble- 
matic is the value of s/l = 305, which appears large (double-deck 
theory) rather than small (boundary-layer theory). 

Figure 4 shows the variation of the wall shear stress based 
on the two theories. Separation occurs in both cases, although 
the length of the separation region is twice as long in the 
double-deck theory as in the boundary-layer theory. But it is 
worth mentioning that in spite of the different streamwise scales 
of the separated regions, there exists a similar character of the 
wall shear-stress distributions. There is a rapid decrease in wall 
shear stress at separation, followed by a region where Zw is 
fairly fiat, with a final sharp dip in Zw before reattachment. 

Figure 5 shows that relatively weak separation occurs, as 
can be seen in the boundary between the attached and separated 
flows. Figure 5a is valid for the value s/l = 305, and Figure 5b 
for the value h/l= 0.097. 

When s/I=305, the double-deck theory (s/l~ ~) is more 
likely to be valid. The experimental value, as shown in Figure 
5a, is very close to the boundary between flows without and 
with separated regions. 

In fact, the measurements on the vertical plate with a 
hump have shown that areas of local flow separation cannot 
be verified within the limits of accuracy of the method. The 
relatively low velocities in this type of flow could be measured 
in areas not closer than 1 mm from the wall. Here the velocity 

had dropped to a value (0.2 mm/s) below which velocities could 
not be resolved. The experiment has been conducted with a 
finite value of the Grashof number and, therefore, separated 
flow may exist in the narrow regime at 1 mm from the wall. 

Semicyl inder hump 

The infinitely large curvature that occurs at the intersection 
between the fiat plate and the cylindrical hump makes it 
questionable whether either theory is appropriate for this case. 
The boundary-layer theory is valid only for boundaries with 
small curvature. 

The double-deck theory can be formally applied to this case, 
but the discontinuity in the contour makes it necessary to 
analyze the results with caution, particularly near the corners. 

With the aforementioned considerations, calculations have 
been carried out that are shown in Figure 6. The experimentally 
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Figure 6 Distribution of wal l  shear stress for the flat plate wi th 
semicylinder according to double-deck theory. / / / !  Areas of separated 
f low observed by experiments 
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determined separation regions are shown in relation to the 
hump contour as shaded areas. The experiments show clearly 
the existence of dead-water regimes in the corner regions of the 
semicylinder configuration. These dead-water regions in which 
the flow velocity is nominally zero can be taken as areas of 
separated flow with negligible flow reversal. The extension of 
these areas is in qualitative agreement with the results of the 
double-deck calculations. 

Summary  

The classical boundary-layer theory cannot determine separation 
on curved walls in natural convection because separation is a 
higher-order effect. Two extensions of the classical boundary- 
layer theory are discussed: boundary-layer theory of higher 
order and double-deck theory. Both theories were applied to 
experiments on a vertical flat plate with humps. 

Both theories are asymptotic theories for Gr--, 0% h/l ~0,  
and h/6 --, ~ (boundary-layer theory) and h/6 -* 0 (double-deck 
theory). Although the experimental configurations were both 
outside of the region of validity of the theories, there was 
qualitative agreement. In the case of the exponential hump, 
both theories predicted weak separation, but this could not be 
verified by the experiments. In the case of the semicylinder 
hump, experimental results showed separation in the corners, 
which was predicted by the double-deck theory. 
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Appendix  1 : F low equat ions for the 
h igher-order  boundary- layer  theory  

First order 

du~ ~_Ov~= 0 
OS ON 

U 1 d?l_'~-V 1 dill __0 d~u~ 
d~ ~ -  ~sin~+ON ~ 

0O 1 001 1 020x 

u~ ~ + v ~  ~N-Pr ~N 2 

Tbe boundary conditions at tbe wall as descr ied below give 
(02u,~ 

N=O: ~ ] w =  - s i n  e < 0  for 0 < e < ~  

whereas (O~u~/ON~)w>O is a ne~ssary condition for tbe 
separation point. 

From tbe first-order solution for tbe flat plate (e=~/2) at 
x ~ l  (S~So), one gets 
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y(Pr) = f :  uo(So, N)dN, x(Pr) = (du°'~\dNJw.,o' 

A(Pr)=(00°~ 
\dN]w,,o 

For Pr=6.8,  this leads to y=0.13, x=0.64, A =  -0.74.  

S e c o n d  order 

Ou~+ Ov~=0 
~S ~N 

OU2c@ ~Ul OU2c OU 1 Op2~ 02U~c 
Ul ~S U2c 0~+Vl  0~+V2c ~ = ~ 2 c  sin ~ -  bS + ON ~ 

( d2ul dul " 0ul ) +k N ~ + ~ - N v ~  0~-u~v~+N~ sin e 

ku~ = - 9~ cos e + OP~ 
~N 

~02c O01 002c O01 I 0202c 
u~ ~ + u e ~ + v ~  - 

~ + v z ~  Pr ON z 

+ k [ - N v ,  0~t+  Z / 0 2 ~  ~01~q 
~ ~r t ~ + ~ J J  

d~ 
where k(S)= - ~ .  

dS 

Boundary condit ions 

N=O: u ~ = v ~ = ~ - I  =u~=v2~=~2~=O 

N ~ :  u~=~=u~=~2~=p~=O 

Appendix  2: F low equat ions for the  inner deck 
of  double-deck theory  4 

dui + SVi =o 
dxi dy~ 

du~ du= dP w B~u~ 
u~ ~x~ + v~ dy~ dx~ + dy~ 

&9~ + dg~ 1 ~2~ 
Ui OXi Vi ~Yi-- Pr ~y~ 

Pw(x3 = - a"(x3 

Boundary  condi t ions 

xi -~ -- o~ : A = 0, u i = yi, 0i = yi 

y~=O: u~=vi=Si=O 

yi--~o~: ui=yi+yci(Xi)+A(xi) 

~i = Yi + Yci(Xi) + A(xi) 
where 

Xi ~ ~) _ 3/7K5/7 X --~/~- 6/7 
1 

ffi = ~ - 1/7~ - 3 / 7 ~ -  6/7 

~i : ~2/7~- 4/7D1~2/7 

~i = ~- 1/TK4/7A- 1(~1 -- 1) ~-6/7 

y~ = hu exp (kuxi) 2 
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